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Static fluid cylinders and plane layers in general relativity 
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Moscow, USSR 

Received 27 June 1978 

Abstract. Static perfect fluid distributions in general relativity which possess cylindrical, 
toroidal or pseudoplanar symmetry (these symmetries are locally equivalent) are 
considered. Solutions in quadratures are obtained for fluids with an unspecified equation of 
state and for p c 2  = np, where n is a constant, with or without an electromagnetic field F,. 
compatible with the symmetry assumed. Moreover, for pc2 = np, Fuv = 0, solutions are 
given in an explicit closed form. Some physical properties of the solutions are discussed. 

1. introduction 

In this paper static perfect fluid distributions are considered in space-times which are 
usually called cylindrically symmetric. In  a number of papers (see Marder 1958, 
Teixeira et a1 1977a, b, Safko and Witten 1972, Krori and Barua 1974 and references 
therein) solutions of this type have been obtained for special choices of the matter 
equation of state or for restricted forms of the metric. Evans (1977) reduced the 
problem for an unspecified equation of state to one second-order ordinary differential 
equation with two unknown functions; it admits quadratures only for some special 
choices of one of them. For the equation of state pc2 = np, Evans arrived at some 
first-order equations which can be further integrated only numerically. Here, using 
another coordinate condition, we solve the problem entirely in quadratures for a perfect 
fluid with an unspecified equation of state and with pc2 = np, with or without an 
electromagnetic field FcLy compatible with the symmetry considered. The FcLy field may 
be external with respect to the fluid or may be created by a charge or current distribution 
within it. The physical properties of these solutions are discussed briefly in 0 7; more 
details will be given elsewhere. For the particular case of charged dust see Bronnikov 
(1979). 

We assume that the space-time is static and possesses two space-like Killing vectors 
which are orthogonal both to the time-like one and to each other. One can choose the 
coordinates so that the metric has the form 

It corresponds to cylindrical symmetry if trajectories of one of the spatial Killing 
vectors, i.e. the coordinate lines of (say) 8, are closed, so that [ E  [0,27r) and 7)  E 

(-CO, CO) are the azimuthal and longitudinal coordinates respectively. If both 6 and 7 
have closed coordinate lines (hence both of them can be treated as angular coordinates), 
we can call the system toroidally symmetric. On the contrary, if (-CO, CO) and 
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7 E (-00, CO), the symmetry can be called ‘pseudoplanar’ (to obtain the well known 
planar symmetry, one should put, in addition, P (x )  = p(x)) .  

Treatment of symmetries such as planar and cylindrical ones allows one to study 
fields due to isolated bodies with extreme departures from sphericity (discs and rods), 
avoiding the mathematical difficulties of the general, nonsymmetric case. Planar 
symmetry is known to be a good approximation for some stages of anisotropic 
gravitational collapse due to the tendency of stronger contraction of matter along the 
shorter deformation axis (Binney 1977). Besides, such symmetries are of interest for 
construction of inhomogeneous cosmological models (see, e.g., Shikin 1972). Pseudo- 
planar symmetry may correspond to a field of an anisotropic plane layer (with x the 
thickness coordinate) or, in a certain approximation, a disc formed by the collapse of a 
triaxial ellipsoid-shaped body. Moreover, planarly or pseudoplanarly symmetric 
models may be useful for an approximate description of thin layers (or crusts) of massive 
bodies of any shape. At any rate, one may hope that solutions like those considered in 
this paper can serve some more realistic purpose than ‘filling the gap in the literature’ 
(Evans 1977). 

The field equations involve only local quantities and may be considered for all the 
above symmetries simultaneously. 

2. Basic equations 

The Einstein tensor GL for metric (1) is diagonal. Under the coordinate condition 

A (XI = Y (x) + CL (x) + P (x) (2) 

it takes the following remarkably symmetric form: 

where a prime denotes dldx. We consider the Einstein equations 

p, v = 0, 1 , 2 , 3  (4) G ”  ~1 = -  K [  TL (F) + TL ( E ) ]  

with T: (F) the energy-momentum tensor for a static perfect fluid with density p and 
pressure p ( p ) .  

( 5 )  
and TL ( E )  that for the electromagnetic field FWY. The latter can be (in the cylindrical 
case) of the three alternative types depending on which components of Fwy survive (see 
Safko and Witten 1971): 

TL ( F )  = diag(pc2, -P, -P ,  -P), 

(i) R type, radial electric field, FOI = -Flo; 
(ii) L type, longitudinal magnetic field, FI3 = -F31; 

(iii) A type, azimuthal magnetic field, F12 = -F2,. 
(In each of the three cases arbitrary mixtures of electric and magnetic fields are 
produced by duality rotations.) In the toroidal and pseudoplanar cases the 6 and 7 
coordinates, and hence the L and A fields, are equivalent. In the special case of planar 
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symmetry a vector quantity with a non-zero component in the ( ~ , r )  plane cannot exist; 
thus only the R field is possible. 

The Maxwell equations 

VaF"@ = -(47r/c)j" V,F*a)CI = 0 (6) 

{F", F31, F21} = 2e-2A{Q(x), J6(x), J , , (x ) }  (7) 
where in the brackets { } only one term for each type of F@,, field should be considered, 
by the scheme {R, L, A} .  The functions Q(x), J6(x) and J,,(x) characterise the integral 
charge and currents in the 6 and 77 directions respectively, and are expressed in terms of 
the four-current density as 

for the three types of fields yield 

{Q(x), Jdx), J,,(x)} = (27r/c) j dx . e2"{Ii'0(x), i '3(x),  j ' 2 ( x ) ) .  (8) 

To consider the system in an external electromagnetic field one should put just 
{a, JE, J,,} = constant. 

In the following we confine ourselves to the R and L fields, noting that solutions for 
the A field are obtained from those for the L field by merely interchanging the .$ and 7 
coordinates. 

The energy-momentum tensors for the R and L fields are 

TL(E)  = (Q2/27r) e2y-2A diag(1, 1, -1, -1) 

T: ( E )  = (J:/27r) e2p-2A diag( 1, - 1, 1, - 1) 

(9) 

(10) 
respectively. 

The sets of equations to be solved are, in general, indeterminate and the solutions 
should contain arbitrary functions. In the following we choose them from the functions 
P,  y, p and then determine the metric completely using some combinations of the 
Einstein equations. Other combinations then enable us to find material quantities p ,  p 
and Q (or J6).  When additional relations are introduced (e.g., a concrete form of the 
equation of state), then, in general, further integration is required. 

and 

3. Solution for Fey 0, p ( p )  unspecified 

When the equation of state p = p ( p )  is unspecified, there are four Einstein equations for 
five unknown functions P, y,  p, p and p (or, equivalently, three independent Einstein 
equations and the hydrostatic equilibrium condition p '  = - y ' ( p c 2 + p ) ) .  Thus one 
unknown function may be chosen arbitrarily. 

The Einstein equation @) - (:) yields 

P" = CL!' p = p + a x + a l  (11) 
(a, a l  =constant; changing the scale along, say, the 77 axis, one can achieve a l  = 0). 
Moreover, the equation (i) - (:) can be written in two equivalent forms 

def 
at'-(2a +4P')a'+2Pt2=O Ly = P + y  (12) 

a " - 2 a a ' - 2 ~ y ' ~ + 4 y ' ~ = O  (13) 
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and integrated in quadratures: either (12) as a linear first-order equation in a’ with an 
arbitrary function p ( x ) ,  or (13) as a separable first-order equation in y with an arbitrary 
function a(x) .  

Thus the metric is completely determined. The quantities p ( x )  and p ( x )  are 
obtained directly from the equations ( i )  + (:) and (i) + (:): 

The resulting solution depends on one arbitrary function ( a ( x )  or p ( x ) )  and one 
essential integration constant a. Note that the solution with planar symmetry cor- 
responds to a = 0. 

4. Solution for Fpv = 0, pc2 = np ( n  =constant) 

Certainly the solution for this equation of state is special with respect to that of § 3. 
Equation (11) is valid, as before. The set of equations is now determinate and the 
solution is expressable in terms of elementary functions. Indeed, the equation 2(:) + 
( n  + I)(:) + ( n  - I)(;) gives 

(n - l ) a “ + 4 @ ” =  0 4 p  = (1 - n )a + 4bx + b (16) 

(b, bl =constant). With (16), equation (12) becomes 

a”+ A a ”  - Ba’ + 2 b 2  = 0 
def 

A =$(n - l ) (n  +7) ,  
def 

B = 2 a + ( n + 3 ) b  

and may be solved easily. Namely, we can write (C, = constant): 

(i) A = B = 0:  

= - b 2 X 2  + C ~ X  + C2; 

(ii) A = 0, B # 0: 

a = 2B-‘b2x + C3 + C4BP2 eBx ; 

(iii) A # 0 , A ~ f B 2 - 8 b 2 A :  

forA>O 

for A < 0. 

C, exp(zA 1 112 x)/exp( -TA 1 112 x )  

exp(Aa - 4Bx) = C7x + Cs forA=O (20) r Cs COS[+( - A ) 1 ’ 2 ~  + Clo] 

Note that A > 0 for the physically plausible choice n > 1; n = 1 implies A = 0. The 
quantities p ( x )  and p ( x )  are found from equations (14) and (15) as before. The solution 
contains two essential integration constants a and 6 ;  the others (al, bl and C,) can be 
eliminated by proper choices of scales along the x o ,  77 and 5 axes and the origin of the x 
coordinate. 
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5. Solutions for FCIYf 0, p ( p )  unspecified 

5.1.  The R field 

The equation (f)- (:) yields (11) expressing p ( x )  in terms of p(x ) .  Taking a(x)  = p + y 
and P ( X )  as arbitrary functions, we can express the other unknown functions p, Q and p 
by the equations (i) + (;), (i) - (f) and 2(:) - (i) + (f) respectively. This results in (14) and 

KQ’ (x )  e2’/v = Q’I -~u,  U = 2 ~ ~ / ” + a c Y ’ - ~ ’ ~  (21) 

2KpC2 e2* = 4 U - 4p”-  Q ’ I .  (22) 

The two functions Q ( x )  and p ( x )  stand for arbitrariness in the fluid equation of state and 
the charge distribution. 

5.2. The L field 

The equation (i) - (:) gives 

2P’(p ’+ y ’ )  = p”+ y” -2p ’y .  

For the case p ‘ +  y’ = 0 we get a solution with pc2 + p  = 0 and one arbitrary function 

def 
P b ) :  

p = y = o ,  - p  = pC2 = J,t/2v =A(X)/K ; -2A = 8’’ e-’%. 

for constant A, 

e’ = (2A)-1’2k-1 cosh k(x  -xo)  k r x o  = constant; (24) 

this is a special electrovacuum solution with a cosmological constant A. 

Consequently, equation (23) gives p ( x )  as a quadrature, 
For the case F ’ +  y ’ Z 0  we can take p ( x )  and y ( x )  as arbitrary functions. 

(25) 

and the quantities p(x) ,  JE(x)  and p(x )  are easily found from the equations (:)+(:), 
(f) - (i) and 2(:) + (!) - (f) respectively. This results in (14) (remember that CY = p + y )  
and 

(26) 2 2 8  KJ( e / I T  = p”-p” 

2Kpc2 e’* = y” - 2p1) (27) 

The two functions ~ ( x )  and y ( x )  stand for arbitrariness in the equation of state and the 
current distribution. 

6. Solutions for F,,f 0 and pes = np 

6.1.  The R field 

The solution is special with respect to (1  l ) ,  (14), (21) and (22). In particular, equation 
(1 1 )  is valid and the equation 2(:)+ (n  - 1)( : )  + (n + 1)(;) leads to 

i ( n  + l ) a ” “ 2 ~ ’ + a ) a ‘ + p ’ ’ + ~ ’ ~  = 0. (28) 
This is a linear first-order equation in ~ ’ ( x )  if we take p ( x )  as an arbitrary function. 
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Hence the problem is reduced to quadratures. The quantities p ( x )  and O(x) can be 
found, as before, from equations (14) and (21). 

6.2. The L field 

The solution is special with respect to (14) and (25)-(27). In particular, equation (23) is 
valid. Also, the equation 2(:) + (n + 1)(:) + (n - 1)(:) gives 

(29) ( n  + 1)p + ( n  - l ) -y+2p =ax +a1 

(a, a l  = constant; a l  is inessential as before) and we can substitute p from (29) into (23). 
The resulting equation takes an integrable form if we choose v ( x ) = p  + y  as an 
arbitrary function and l ( x )  = ( n  - l)-y - 2 p  (n # -1, see (24)) as an unknown function: 

25’2+(n+1)2v‘’ -22a(n+l )v’+4(n  - l ) v f 2 = 0 .  (30) 

Equations (29) and (30) determine the metric; p ( x )  and JE(x)  are again determined from 
(26) and (27). 

The arbitrary functions of this section correspond to charge and current dis- 
tributions. 

7. Discussion 

The above solutions are obtained under very general conditions. They are physically 
resonable if the arbitrary functions and constants satisfy some additional requirements; 
some of these are discussed here. 

1, When the fluid equation of state is unspecified, the function p = p ( p )  is known in 
a parametric form: p = p ( x ) ,  p = p ( x ) .  A physically reasonable solution should be such 
that 

(31) 

(32) 

The corresponding limitations upon the arbitrary functions are obtained in a straight- 
forward way from the solutions. For example, for the solution of § 3, (31) implies 
 CY"^ 0 , p ” s  0 (if a ( x )  is arbitrary, then p ( x )  is expressed in terms of a and p ‘ ’ ~  0 is an 
implicit limitation upon a ( x )  and vice versa). Requirement (32) upon the velocity of 
sound (dp/dp)”2 leads to complicated conditions involving third-order derivatives. 

2. For cylindrically symmetric configurations it is natural to require that the 
solution should be regular at an axis if it exists (i.e., if e’ = 0 at some x = x , ) .  This means 
that the space-time should be locally flat and p , p  and FFy have no singularities at 
x = x ,  ; in particular, 

2 o s p s p c  

0 c dp/dp S c 2 .  

l Y l < W  l/-l<a e-Ay‘ +. o e2P-2hB’2+ 1. (33) 
The third condition means that the gravitational force acting upon a static test particle 
vanishes at the axis; the fourth one requires a proper circumference-radius ratio. For all 
the solutions with FWv = 0 and with the R field, this implies, in particular, a # 0 and 
x,  = *W for a Z 0 (see (11)). 

3. For pseudoplanarly symmetric configurations it is of interest to know under what 
conditions the fluid layer is regular and symmetric under reflections with respect to a 
certain plane, say x = 0. This should be the case if the solution approximates the field of 
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a finite disc which is symmetric in the thickness direction. This requirement means that 
the functions p , p ,  y, p , P  should be even C f ( - x ) = f ( x ) ) .  For all the solutions with 
FWy 0 and with the R field, this implies a = 0 in equation (1 1); thus the symmetry is 
necessarily planar. Amazingly, a discrete symmetry requirement for the x direction 
creates additional symmetry in the ( 7 , t )  plane! 

4. The explicit form of the solutions of § 4 confirms Evans’ (1977) statement on the 
‘instability in the equation of state’ for n + 1. This means there is no smooth transition 
from solutions with n > 1 to the solution with n = 1. Other ‘instabilities’ of this kind, 
concerning smoothness in the integration constants a and b, are easily observed in 
equation (18)-(20). 
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